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Abstract 
 
 Simultaneous Multithreading, often abbreviated SMT, is 
a technique for improving the overall efficiency of 
superscalar processors with hardware multithreading. 
SMT permits a processor to concurrently execute multiple 
independent instruction streams every clock cycle, 
potentially improving processor throughput. However, 
this can introduce contention for shared resources 
amongst threads running concurrently in SMT mode. In 
order to enable the programmer to control the ratio in 
which resources are shared, the IBM POWER5 processor 
allows prioritization of one thread over another. The 
processor also implements Dynamic Resource Balancing 
(DRB) hardware, which throttles back a thread that 
monopolizes architectural resources by reducing its 
thread priority. Unlike thread priorities, the DRB is not 
tunable by software. In this paper, the hardware thread 
priorities that give best processor throughput are referred 
to as optimal hardware thread priorities. 
 
The research described in this paper answers the 
following question: Does the POWER5’s DRB influence 
the identification of optimal hardware thread priorities 
for a given pair of threads running concurrently in SMT 
mode, i.e., a co-schedule? To answer this question we 
used a POWER5 simulator and compared cycles per 
instruction (CPI) with DRB enabled and DRB disabled 
while simulating application runs for application pairs 
composed of SPEC CPU2000 and STREAM benchmarks. 
Our results show that (1) there was less than 1% 
difference between the CPIs of the threads of all co-
schedules except for co-schedules executing a SPEC 
floating-point intensive benchmark and a SPEC integer-
intensive benchmark; (2) whether DRB is enabled or 
disabled, approximately 40% of co-schedules do not 
experience best performance with equal priorities; and 
(3) approximately 69% of the co-schedules experienced 
best performance at the same priorities with DRB enabled 
and DRB disabled. Thus, the enabling or disabling of the 
POWER5’s DRB does not have a significant impact on 
the identification of a co-schedule’s optimal thread 
priorities. 

 
1. Introduction and Background 

 
The disparity between the speeds of memory and 
processors has led to reduced processor utilization and 
throughput. To address this problem, computer architects 
have implemented techniques within the processor 
pipeline to take advantage of the inherent parallelism of 
applications, called instruction-level parallelism (ILP). 
However, processors continued to remain underutilized 
[1]. 
 
Simultaneous multithreading, often abbreviated SMT, is a 
technique used to improve processor utilization. A 
processor with SMT interleaves the execution of multiple 
instruction streams in the pipeline every clock cycle. This 
interleaving allows resources that are left idle by one 
thread to be used by another, thus, improving throughput 
by taking advantage of parallelism amongst multiple 
threads, called thread-level parallelism (TLP). A 
superscalar processor with SMT can take advantage of 
thread-level and instruction-level parallelism to improve 
processor utilization and, thus, throughput. IBM [2] and 
Intel [3] have implemented SMT on superscalar 
processors.  
 
Hardware threads of an SMT processor share most of the 
processor’s resources at cycle-level granularity. In 
general, concurrently executing applications (hereinafter 
called threads) that do not compete for the same classes of 
resources, such as memory, increase processor 
throughput. However, throughput drops when the threads 
compete aggressively for the same classes of resources. 
The prediction of contention for shared resources depends 
on the characteristics of the concurrently executing 
threads.  
 
To address the issue of reduced throughput due to 
resource contention, some SMT processors allow enabling 
and disabling of SMT mode [2, 3, 17], and prioritization 
of one thread over the other [3, 17].  
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The IBM POWER5 [2] implements SMT with two 
hardware threads per core. To control resource contention 
by the hardware threads, the POWER5 allows software to 
enable and disable SMT mode and assign thread priorities 
that allow prioritization of one thread over another by 
increasing the proportion of decode cycles allocated to the 
higher-priority thread. The broader research topic, of 
which this project is a part, seeks to develop a 
methodology to improve the throughput of the IBM 
POWER5 processor by tuning thread priorities. In 
particular, our research group is investigating the use of 
application characteristics of CPU-intensive and memory-
intensive workloads to develop a model that can predict 
“optimal” settings of POWER5 priorities to improve 
throughput.  This body of research was motivated by our 
initial results [10], which show that SMT processor 
throughput can be increased by using optimal priority 
settings instead of the default settings. This study was 
conducted by simulating application runs using traces 
from the SPEC CPU2000 [5] and STREAM [6] 
benchmark suites. 
 
The POWER5 also has built-in hardware, called Dynamic 
Resource Balancing (DRB) logic, to prevent one thread 
from monopolizing the processor’s microarchitecture 
resources; the DRB is not tunable by software.  With this 
knowledge, we wanted to investigate whether the results 
of  [10] were influenced in any way by the simulation of  
the DRB logic. The research described in this paper 
answers the question: For a given pair of threads is the 
“optimal” pair of thread priorities dependent on whether 
DRB is enabled or disabled? 
 
To answer this question, we ran a number of simulations 
on the IBM performance simulator for Linux on POWER 
[4] with DRB logic enabled and disabled, and studied the 
processor performance in terms of cycles per instruction 
(CPI). For these simulations, we used 11 different 
combinations of thread priority pairs for 394 pairs of 
concurrently executing applications (hereinafter called co-
schedules). The applications used for this study were 
SPEC CPU2000 [5] floating-point intensive and integer-
intensive benchmarks, as well as memory-intensive 
benchmarks from the STREAM suite [6].  
 
Our results show that  

(1) the differences between the CPIs of the threads 
of co-schedules, executed with DRB enabled 
versus DRB disabled, was less than 1%;  

(2) whether DRB is enabled or disabled, 
approximately 40% of co-schedules do not 
experience best performance with equal 
priorities; and  

(3) approximately 69% of co-schedules experienced 
best performance at the same priorities with DRB 
enabled and DRB disabled.  

Thus, enabling or disabling of the POWER5’s DRB does 
not have a significant impact on “optimal” thread 
priorities for co-schedules comprised of floating-point 
intensive and integer-intensive benchmarks in the SPEC 
CPU 2000 suite and benchmarks in the STREAM suite. 
 
The rest of the paper is organized as follows. Section 2 
discusses related research. The broader project, of which 
this study is a part, is outlined in Section 3. The 
microarchitecture details of the POWER5 are described in 
Section 4. The experimental methodology and the 
methods used for data collection are explained in Sections 
5 and 6, respectively. The simulation results are presented 
and discussed in Section 7. Finally, Section 8 presents 
conclusions and future work. 
 
 
 2. Related Research 
 
SMT was first introduced in a simulation of alpha binaries 
developed by a group of researchers at the University of 
Washington in 1995 [7]. Subsequently, SMT was 
introduced in superscalar processors by Intel as Hyper-
Threading [2] and by IBM in their POWER5 and 
POWER6 processors [3, 17].  
 
Intel and IBM SMT processors allow enabling and 
disabling of SMT mode. Furthermore, the IBM POWER5 
and POWER6 processors allow prioritization of one 
hardware thread over another by using priorities [8] to 
control the ratio of allocated decode cycles for two 
threads running concurrently in SMT mode.  
 
The Linux 2.6 [15] and AIX 5L [16] operating systems for 
POWER5 are SMT-aware [9]. Both operating systems 
treat each hardware thread as a logical processor and 
provide run queues for each thread. They also provide 
SMT-aware load balancing support. AIX and Linux use 
hardware thread priorities to improve kernel performance. 
For example, given a co-schedule comprised of two 
threads that share a lock, they lower the priority of the 
thread that is busy-waiting on the spinlock, allowing a 
larger allocation of processor resources to the thread that 
holds the lock.  
 
According to a study performed at the University of Texas 
at El Paso [10], SMT processor throughput can be 
increased by using optimal priority settings instead of the 
default settings.  
 
 



3. Project Goals 
 
SMT has the potential to improve processor utilization 
and, thus, overall processor throughput. However, 
applications executing concurrently on hardware threads 
of an SMT processor compete with each other for shared 
processor resources, such as the cache memory. As a 
result, concurrently executing applications may interfere 
with each other’s performance. Inter-application 
interference can have a considerable effect on the overall 
utilization and, thus, throughput of the processor. Modern 
operating systems provide specific support for thread 
scheduling and resource management of SMT processors. 
However, they do not alleviate performance degradation 
due to inter-application interference. 

 
The broader research is attempting to develop a 
methodology to improve the throughput of the IBM 
POWER5 processor by using application resource-usage 
characteristics. These characteristics are used to find the 
“optimal” settings of knobs on SMT processors that 
improve processor throughput, e.g., hardware thread 
priorities and the enabling/disabling of SMT mode. We 
are studying applications that are compute-intensive and 
memory-intensive; since a processor context switches on 
I/O activity, we do not study I/O-intensive applications.  
 
The methodology collects processor resource-usage 
characteristics of applications running in Single-Threaded 
(ST) mode, i.e., SMT mode disabled. The ST 
characteristics of the two applications are used to predict 
settings of hardware thread priorities, explained in Section 
4, for improving the application-pair’s processor 
throughput in SMT mode. In order to cover  a broad range 
of co-schedules, we study both homogeneous and 
heterogeneous workloads. Heterogeneous co-schedules 
consist of applications that stress different classes of 
processor resources, whereas homogeneous co-schedules 
consist of applications that stress the same classes of 
processor resources. Interference and, thus, performance 
of heterogeneous co-schedules is dependent on the 
characteristics of the concurrently executing pair of 
applications. In contrast, homogeneous co-schedules may 
produce the worst case scenario for inter-application 
interference and the associated SMT processor 
throughput. 
 
A thread that uses more than its fair share of processor 
resources may prevent its sibling thread from making 
reasonable progress and, thereby, reduce overall 
throughput. To address this issue the POWER5 has DRB 
logic implemented in hardware, described in Section 4, 
which throttles down a thread that hogs processor 
resources. The work presented in this paper investigates 

the influence of the DRB on the “optimal” pair of thread 
priorities for a given co-schedule.   
 
 
4. IBM POWER5 
 
The POWER5 [2] chip contains two identical processor 
cores running at 1.65 GHz; each processor core supports 
two logical hardware threads. Each processor core has its 
own 62 KB level-one (L1) instruction cache and a 32 KB 
L1 data cache. The L1 caches are shared between the two 
hardware threads of each core. Both cores in the processor 
share a 1.9 MB unified, in-line, level-two (L2) cache that 
is fully inclusive of the L1 instruction and data caches. A 
level-three (L3) cache controller (which provides for an 
L3 cache directory) is located on-chip; however, the L3 
cache, itself, is implemented off-chip. The L3 cache is a 
36 MB victim cache, i.e., it stores data and instructions 
evicted from the L2 cache; thus, the L3 cache is not 
inclusive of the L2 cache. The L3 cache is shared by both 
processor cores of the POWER5 chip. All hardware 
threads of both processor cores access the L2 and L3 
caches. 
 
The POWER5 chip supports both SMT and Single-
Threaded (ST) execution modes. In SMT mode, there is a 
program counter (PC) for each hardware thread and 
instruction-fetch alternates between the two PCs. In ST 
mode only one PC is used and all instructions are fetched 
from that thread during every cycle. After a fetch, the 
instructions are placed in separate instruction buffers for 
each thread. Based on the priority setting, a certain 
number of instructions of a hardware thread are fetched 
from the instruction buffers, and a group is formed. All 
instructions in a group belong to the same thread. All 
instructions within a group are decoded in parallel and 
dispatched. To simplify the logic of tracking instructions 
through the pipeline, instructions are tracked as a group. 
At the time of dispatch, control information for each 
group of instructions is stored in a global completion table 
(GCT). 
 
In a multi-threaded system, one thread might monopolize 
the processor resources and block other threads from 
executing. The POWER5 implements Dynamic Resource 
Balancing (DRB) logic, which helps concurrently run its 
two hardware threads effectively on the system. DRB 
logic monitors L2 miss queues and GCT entries; if a 
thread exceeds a threshold for any of these resources, the 
DRB detects this condition and throttles that thread down 
so that the other thread can make forward progress. The 
DRB is implemented at the hardware level and is not 
tunable by software. Depending on the situation, one of 
three available mechanisms is used to throttle down a 



dominating thread: (1) reducing the priority of a thread 
that exceeds a threshold number of GCT entries; (2) 
inhibiting instruction decode of a thread that has exceeded 
a threshold number of outstanding L2 cache misses; and 
(3) flushing instructions from issue queues of a thread that 
has long latency instructions. 
 
Adjustable thread priorities [9] on the POWER5 
processor allow software to determine the number of 
decode cycles allocated to each hardware thread; the more 
decode cycles, the higher the potential of having more 
execution resources. Eight software-controlled priority 
levels are supported for each thread in the range 0 to 7 
(highest), with the higher priority thread receiving more 
decode cycles. Three execution modes are supported in 
the POWER5: (1) hypervisor mode, in which all priority 
levels can be set; (2) supervisor mode, in which priorities 
1 through 6 can be set; and (3) user mode, which is 
restricted to priorities 2 through 4. 
 
Given that the priority of thread 1 is X and that of thread 2 
is Y, the share of decode cycles allocated to thread 1 is 
given by equation (1); the number of cycles allocated to 
thread 2 is calculated as: 1 – decode-cycles share of thread 
1. The number of decode cycles associated with the 
possible thread priorities are shown in Table 1. By 
default, the processor assigns the priority of 4 to both 
threads.   
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Thread 
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Thread 

Y 

Decode 

Cycles 

2 7 -5 1/64 63/64 
3 7 -4 1/32 31/32 
4 7 -3 1/16 15/16 
2 4 -2 1/8 7/8 
3 4 -1 1/4 3/4 
4 4 0 1/2 1/2 
4 3 1 3/4 1/4 
4 2 2 7/8 1/8 
7 4 3 15/16 1/16 
7 3 4 31/32 1/32 
7 2 5 63/64 1/64 

Table 1 Decode Cycles for Thread Priorities 

 
 
5. Experimental Environment 

 
The research described in this paper determines if the 
optimal pair of thread priorities is dependent on whether 

the DRB logic implemented on the POWER5 processor is 
enabled or disabled. The DRB is implemented at the 
hardware level and is not tunable by software. Therefore, 
in order to study the performance of the POWER5 
processor without the influence of the DRB logic, we used 
an instruction trace simulator [11] for the POWER5 that 
allows enabling and disabling of the DRB. Section 5.1 
describes the simulator and its settings and Section 5.2 
describes the workload traces studied and the 
methodology used to capture the traces that were used to 
drive the simulator. 
 
5.1. Simulator 
 
In 2005 IBM released its IBM performance simulator for 
Linux on POWER [12], which is “a suite of performance 
models based on IBM’s POWER series of processors.” 
This tool allows users of the Linux operating system 
running on a POWER processor to examine how an 
application executes on various IBM POWER processor 
models so that performance hazards can be identified and 
prevented on such systems. The simulator requires the use 
of the Linux operating system on a 64-bit IBM POWER-
based computer as well as the IBM vacpp run-time library 
for Linux [13]. 
 
The IBM performance simulator for Linux on POWER 
requires as input, instruction traces and produces as 
output, a processor performance report with detailed 
information on metrics such as CPI, functional unit usage 
statistics, and instruction histograms for each thread.  
 
The relevant command line arguments required to run the 
simulator are the following: 

 num_inst: the number of architected instructions 
to run before exiting: set to greater than the 
combined number of instructions of the two 
traces 

 t0_prio: priority of thread 0 
 t1_prio: priority of thread 1 

 
The trace-driven simulator is configured in SMT mode 
with the desired thread priority combination. The 
simulator in SMT mode exits and, thus, data collection 
stops when the processing of one of the concurrently 
executing traces completes. This is done because the goal 
of the research is to study the effect of the DRB, which is 
effective only in SMT mode. 
 
The execution of a trace co-schedule on a single processor 
of a two-processor POWER5 running the Linux 2.6.17 
kernel was simulated. The simulated system has 5 GB 
main memory and a 70 GB hard disk. 
 



5.2. Workload Traces 
 
The benchmarks used to generate the traces used in this 
study are described in Sections 5.2.1 and 5.2.2, and 
instruction tracing is described in Section 5.2.3. 
 
5.2.1. SPEC CPU2000 

 
Benchmarks in the SPEC CPU2000 [5] suite are compute-
intensive applications with working sets that fit in main 
memory. The suite consists of floating-point intensive and 
integer-intensive applications. Tables 2 and 3 show the 
SPEC CPU2000 benchmarks that were used in this study. 
5.2.2 STREAM2 

 
The STREAM benchmark suite [6] is designed to stress 
the memory subsystem. The second version of the 
benchmark, called stream2, measures sustained memory 
bandwidth at all levels of the memory. The benchmark 
executes four vector kernels (fill, copy, daxpy, and sum) 
described in [6]. During execution, the benchmark uses 32 
different array sizes proceeding from the minimum size to 
the maximum size via increments calculated using 
Equation (2), where j ranges from 1 to 32. The amount of 
work done for any vector length is equal to the maximum 
array size. Our configuration of stream 2 sets the 
maximum array size to 120,000,000, which is much larger 
than the simulated L3 cache. The minimum array size is 
the default, i.e., 30.  
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In our study, we use two different versions of stream2 to 
generate two different traces, one that stresses the on-chip 
L1 and L2 caches, and one that stresses the off-chip L3 
cache and main memory. These versions are called 
stream2_L2 and stream2_L3, respectively. The way that 
traces are collected is described in the next section. 
 

 
 

Benchmark Name Description 

applu Parabolic / Elliptic Partial 
Differential Equations 

apsi Meteorology: Pollutant 
Distribution 

art Image Recognition / Neural 
Networks 

equake Seismic Wave Propagation 
Simulation 

fma3d Finite-element Crash 
Simulation 

galgel Computational Fluid 
Dynamics 

mesa 3-D Graphics Library 
mgrid Multi-grid Solver: 3D 

Potential Field 
sixtrack High Energy Nuclear Physics 

Accelerator Design 
wupwise Physics / Quantum 

Chromodynamics 
Table 2 SPEC CPU2000 Floating-point Benchmarks 

 

 
5.2.3 Instruction Tracing 

 
The instruction traces used for this experiment were 
collected using the Linux tool ITrace [11] on a 
preliminary study performed by Meswani and Teller at the 
University of Texas at El Paso [10].  
The instruction traces are captured in a main memory 
buffer, the size of which is limited to 200 MB per CPU. It 
was experimentally determined that a ten-second time 
interval is required to fill the trace buffer and capture the 
largest possible trace. During this time interval, ITrace 
can capture between 3 and 10 million instructions for the 
benchmarks described above.  
 

 

Benchmark Name Description 

crafty Game Playing: Chess 
gap Group Theory, Interpreter 
gcc C Programming Language 

Compiler 
mcf Combinatorial Optimization 

parser Word Processing 
perlbmk PERL Programming 

Language 
twolf Place and Route Simulator 
vortex Object-oriented Database 

Table 3 SPEC CPU2000 Integer Benchmarks 
 
 

6. Data Collection 
 
The performance data presented in this paper was 
collected from a simulator introduced in Section 5.1. The 
application groups considered for the study are discussed 
in Section 6.1. The performance metrics analyzed from 
the simulation results are presented in Section 6.2. 
 
6.1. Application Co-schedules 
 
In order to examine the performance of the POWER5 
processor for homogeneous and heterogeneous workloads, 
we studied six different co-schedule groups. For 
homogeneous workloads, we studied three groups: (1) co-
schedules comprised of floating-point intensive 



applications; (2) co-schedules comprised of integer-
intensive applications; and (3) co-schedules comprised of 
memory-intensive applications. On the other hand, for 
heterogeneous workloads, we considered: (1) co-
schedules comprised of floating-point intensive and 
integer-intensive applications; (2) co-schedules comprised 
of floating-point intensive and memory-intensive 
applications; and (3) co-schedules comprised of integer-
intensive and memory-intensive applications. 
 
In our study, a co-schedule refers to an application pair 
A,B running on hardware threads X,Y, respectively. The 
hardware threads X,Y can be set at priorities (i,j), 
respectively. The threads can be set at one of the 
following eleven thread priority combinations: (2,4), 
(2,7), (3,4), (3,7), (4,2), (4,3), (4,4), (4,7), (7,2), (7,3), 
(7,4).  Thus, every co-schedule can be run in 11 different 
priority setting combinations. Overall, we simulated 394 
co-schedules at eleven different priority setting 
combinations, for a total of 4,334 experiments, once with 
DRB enabled and once with DRB disabled 
 

6.2. Performance Metric 
 
The cycles per instruction (CPI) metric measured for each 
experiment executed on the simulator for Linux on 
POWER was obtained after one of the hardware threads 
of a co-schedule finished execution. The formula used to 
calculate the percentage difference of CPI for a co-
schedule executed with DRB enabled versus DRB 
disabled is shown in Equation (3). 
 

bledCPIDRBdisa
bledCPIDRBdisaDRBenabledCPI )(*100

       (3) 

 
 

7. Results 

 
Using the processor usage data reported by the simulation 
model, we recorded the CPI for each experiment with 
DRB enabled and DRB disabled. For every co-schedule 
we calculated the difference in CPI between the 
experiments with DRB enabled and DRB disabled. For 
every co-schedule, we recorded the optimal pair of thread 
priorities with DRB enabled and DRB disabled. We also 
documented all cases for which the ordering of the pairs 
of thread priorities did not hold for DRB enabled and 
DRB disabled. 
 
For tables and graphs in this section, we refer to the group 
of co-schedules comprised of SPEC CPU2000 floating-
point intensive benchmarks as SPECFlt. The group 
comprised of SPEC CPU2000 integer-intensive 
benchmarks is referenced as SPECInt. The group of co-

schedules comprised of SPEC CPU2000 floating-point 
intensive and integer-intensive benchmarks is referenced 
as MixedPairs. For the co-schedules consisting of 
STREAM memory-intensive benchmarks and SPEC 
CPU2000 floating-point intensive benchmarks, the group 
is called Stream_SPECFP. The group comprised of co-
schedules of the STREAM memory-intensive benchmarks 
and SPEC CPU2000 integer-intensive benchmarks  is 
referred to as Stream_SPECINT. The last group of co-
schedules, comprised of STREAM memory-intensive 
benchmarks, is referenced as Stream_Stream.  
 
The main contribution of this study and other observations 
made as a result of this study are presented in Section 7.1 
and 7.2, respectively. 
 
7.1 Main Contribution 
 
Table 4 presents the absolute average percentage CPI 
difference between experiments completed with DRB 
enabled versus DRB disabled for a given application 
group. As can be seen from this table, the average 
percentage difference in CPI amongst all groups is less 
than 1%. This shows that results from our previous study 
[10] were essentially unaffected by the DRB hardware for 
the set of applications and size of traces simulated. Table 
4 also implies that the DRB logic does not influence the 
identification of the optimal pair of thread priorities. 
 
7.2 Other Observations 

 
Figure 1 shows the percentage of co-schedules for a given 
application group that did not experience best 
performance with equal thread priorities whether DRB 
was enabled or disabled. As can be seen from this graph, 
approximately 42% of co-schedules across all groups did 
not experience best performance at equal priorities. The 
top bar of each group indicates the percentage of co-
schedules for that group that experienced the best 
performance at unequal priorities when DRB was enabled. 
The bottom bar shows the percentage of co-schedules that 
yielded the best performance at unequal priorities when 
DRB was disabled. Independent of the DRB logic being 
enabled or disabled, for 42% of the experiments, the best 
performance from the processor was obtained when the 
thread priorities for a co-schedule were not equal. 
 
Next, we analyze if the best priority settings for a co-
schedule changes if DRB is enabled or disabled. As 
shown in Figure 2, the average percentage of co-schedules 
that experienced the best performance at equal priorities 
with DRB enabled and disabled across groups is 69%.  
 



Next, we analyze if the ordering of priorities by 
throughput, going from best case to worst case, for an 
application pair changed if DRB was enabled or disabled. 
For 78% of all co-schedules, the ordering of thread 
priorities changes if DRB is enabled or disabled.  In other 
words, the enabling and disabling of DRB affects the 
ordering of priorities for a given co-schedule. However, 
we also observed that for 63% of these co-schedules, the 
best case priority settings remains the same for DRB 
enabled and DRB disabled. These results are shown in 
Figure 3.  
 
Our experiments show that the enabling or disabling of 
DRB on the POWER5 processor does not have a 
significant effect on determining the optimal pair of thread 
priorities for the applications used in this study. 
 
 

Group Name Average % delta in CPI 

for DRB Enabled and 

Disabled 

SPECFlt 0.922% 
SPECInt 0.696% 

MixedPairs 0.950% 
Stream_SPECFP 0.851% 

Stream_SPECINT 0.851% 
Stream_Stream 0.673% 

Table 4 Average Percentage Difference in CPI for 

DRB Enabled and Disabled 

 
 
 

 
Figure 1. Application Pairs for which Best Thread 

Priorities were not Default (4, 4) 

 
 
 
 

 
Figure 2. Application Pairs with the Same Best Thread 

Priorities with DRB Enabled or Disabled 

 

 
Figure 3. Application Pairs with the Same Best Thread 

Priorities but Different Orderings of Remaining 

Priorities with DRB Enabled and Disabled 

 
 
8. Conclusions and Future Work 
 
The research described in this paper shows that the 
enabling or disabling of the DRB logic on the POWER5 
processor does not have a significant impact on 
identification of optimal pairs of thread priorities for co-
schedules comprised of floating-point intensive and 
integer-intensive benchmarks in the SPEC CPU2000 suite 
and benchmarks in the STREAM memory-intensive suite. 
The results of this work are based on application traces. If  
it were possible, we would verify the results of this study 
using a processor that allows the enabling and disabling of 
the DRB and complete applications. 
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